BRAWIJAYA UNIVERSITY

FACULTY OF AGRICULTURE

DEPARTMENT OF PLANT PESTS AND DISEASES / MASTER OF AGRICULTURAL ENTOMOLOGY STUDY PROGRAM

SEMESTER COURSE PLAN											
COURSES		CODE	CLUSTERS OF COURSES		CREDITS	SEMESTER	Date of Preparation				
Biological Control		PTH81137	Agricultural Entomology		2 SKS 2.34 ECTS	Odd	June 8, 2021				
AUTHORIZATIO	N	Developer Lecturer		Course Coordinator		Head of Study Program					
Department of Plan Diseases	nt Pests and	Dr. Ir. Sri Karindah, MS. Dr. Ir. Retno Dyah Puspitarini, MS.		Name Signature		Dr. Akhmad Rizali, SP., M.Si. Signature					
Learning Outcomes	ILO STUDY PROGRAM										
	1 Able to work together and have social sensitivity and high concern for society and the environment.										

	2	Mastering concept, theories and methods in the field of agricultural entomology							
	3	Mastering the concept of integrated pest management in the context of sustainable agriculture							
	4	Mastering the theory of biotechnology in controlling plant pest and managing plant resistance							
	5	Have skills in contributing to solving problems in society through research design in the field of agricultural entomology							
	6	Have skills in developing innovations and proven applications for solving problems in society in the field of agricultural entomology in an inter/multidisciplinary manner within the framework of sustainable agriculture							
	Course Learning Outcome								
	1	Students are expected to be able to understand and implement biological control, classical biological control, and modern							
	biological control; Biological control evaluation; and The Role of Biological Control in Integrated Pest M								
	2	Able to integrate biological control in Integrated Pest Management and evaluate the application of biological control							
Brief Description of Course		urse discusses the ecological basis of biological control, other sciences related to biological control, biological control cion techniques and their role in Integrated Pest Management							
Learning Material / Subject	2)	Introduction The ecological basis of biological control and the role of population models in biological control Insect taxonomy and biological control							
	4) 5)	Theory and application of biological control (conservation of natural enemies) Theory and application of biological control (augmentation of natural enemies) Theory and application of biological control (introduction of natural enemies)							

	7) The	7) The use of microorganisms as biological agents										
	-		eding (
	-		eding (ماممامما						
				-		ological	contro	I				
	,	11) Biological control evaluation 12) Safety of biological control practices for agroecosystems										
	13) Successes and failures of biological control											
	14) The	e role	of biolo	ogical c	ontrol i	n integr	ated pe	est mar				
Relationship of												
CLO and ILO		Α	K1	K2	K3	S 1	S2	S 3				
		1										
	CLO 1	0.5	0	0	0	0	0	0.5				
	CLO 2	0	0.5	0	0.5	0	0	0				
	CLO 3	0	0	0.5	0	0	0.5	0				
	CLO 4	0.5	0	0	0.5	0	0	0				
	CLO 5	0	0	0.5	0	0	0	0.5				
	CLO 6	0	0.5	0	0.5	0	0	0				
Book	Main											
			-	-		. Biolog of Crop						

	3. Ehlers RU	. 2011. Regulation of Biological	Control Agents. Springer							
	4. Morales-F		on of Beneficial Organisms: Invertebrates and Entor	nopathogens.						
	5. Mason P. Press	2022. Biological Control: Globa	I Impacts, Challenges and Future Directions of Pest	Management. CRC						
	Supporting References									
	(Saccharu	 Wibowo D, Rahardjo BT, Karindah S, Muhammad FN. 2023. The diversity and abundance of weeds in sugarcane (Saccharum officinarum) plantations and its relationships with Hymenoptera parasitoids diversity. Biodiversity Journal of Biological Diversity 24(4). 								
		ri D. 2021. Composition of tropical agricultural landso liyon, 7(7).	cape alters the							
	nti N, Bachtiar MA, Rafid EDR. 2022. Contribution of eraction between pests and natural enemies in cacace 44(3): 479-489. control technology for <i>Plutella xylostella</i> L. on green	agroforestry.								
	juncea L.)	using <i>Bacillus thuringiensis</i> . Tro	pical Wetland Journal, 7(2): 52-60.	,						
Learning Media	Software:		Hardware:							
Meula	Ppt Files		Computer, LCD							
Team Teaching	Dr. Ir. Sri Karind	ah, MS.								
	Dr. Ir. Retno Dy	ah Puspitarini, MS.								
Required Courses	1) None									

Week	Sub-CLO (as expected final capability)	Indicators	Criteria & Forms of Assessment	Learning Methods (Lectures / Assignments / other forms of learning)	Time (Duration)	Learning Materials / [References]	Proportion (%)
1	Students are able to master material about the definition and scope of Biological Control course material	accuracy in explaining Biological Control	Criterion: accuracy of students in explaining the understanding of Biological, Ecological and Taxonomy- Based Biological Control, Ecology and Insect Taxonomy Form of Assessment:	Method: Contextual Instruction Lectures and discussions Self-study	100 minutes	 Scope of biological control Other sciences related to biological control The history of biological control in Indonesia and abroad 	5 %

			Results of discussion				
2	Students are able to study the ecological basis of biological control and the role of population models in Biological Control	Accuracy of examining the ecological basis of biological control and the role of population models in Biological Control	Criterion: The accuracy of students studying about densely meshed factors (pests vs. natural enemy complexes) Scoring form: Quiz	Method : Contextual Instruction Lectures and discussions Self-study	100 minutes Self-study (2x60 minutes)	 The concept and mechanism of natural control Islands theory for biological control 	5 %
3	Students are able to examine the importance of the role of Taxonomy in the success of Biocontrol	Accurately examine the important role of taxonomy in the success of Biocontrol and give examples of entomophagous insects	Criterion: Students are able to distinguish the types of natural enemies Form of assessment:	Method: Lectures and discussions Self-study	100 minutes + 120 minutes	 The importance of insect taxonomy for biological control Important family of entomophagous insects (predators and parasitoids) 	5 %

			Tasks - Reports				
4	Students are able to master knowledge and plan conservation of natural enemies with habitat management to support Biological Control	accurately describes the conservation of natural enemies as a biological control technique	Criterion: accuracy of measuring and structuring habitat components for conservation of natural enemies Form of assessment: assignment	Method: Lectures and discussions Self-study	100 minutes Self-study (2x60 minutes):	 Conservation of natural enemies Habitat management to support biological control Pesticide selection Refugia and trap plants 	5 %

5	Students are able to master knowledge and plan augmentation of natural enemies in greenhouses and in the field to support Biological Control	Accuracy in planning and implementing natural enemy augmentation as a biological control technique	precision of measuring and structuring components for augmentation of natural enemies Form of assessment: report	Method: Lectures and discussions Self-study	100 minutes Self-study	 Augmentation: Inoculative Inundative In the greenhouse In the Field 	5 %
6	Students are able to master knowledge and plan the introduction of natural enemies to support Biological Control	accuracy in explaining and planning about the introduction of natural enemies as a biological control technique	Accuracy in planning and managing components for the introduction of natural enemies Form of assessment: report	Methods: Lectures, and discussion	100 minutes	 Introduction of natural enemies: Exploration of natural enemies Evaluation of potential natural enemies Planning and preparation for the introduction Colonization: release procedure 	5 %

7	Students are able to master knowledge and plan the use of microorganisms as biological agents	Accuracy explains the use of microorganisms as biological agents	Accuracy in planning and managing components for the introduction of natural enemies Form of assessment: Tasks - reports	Method: Lectures, and discussion	100 minutes	 Selection of microorganisms as biological agents Epizootic and enzootic 	5 %
8	Mid-Term Exam						15 %
9	Students are able to develop knowledge and plan mass breeding of natural enemies to support Biological Control	accuracy of planning and carrying out mass breeding of natural enemies	accuracy in planning and managing factors of mass breeding factors Form of assessment: Task - Presentation	Method: Lectures, and discussion	100 minutes	 Information of insect entomophages and their hosts Mass breeding program 	5 %

10	Students are able to develop knowledge and plan mass breeding of natural enemies to support Biological Control	accuracy of planning and carrying out mass breeding of natural enemies	accuracy in planning and managing nutritional and environmental factors for mass breeding of natural enemies Form of assessment: Tasks - Reports	Method: Lectures, and discussion	• 100 minutes	 Nutrition for entomophagous insects and their hosts Facilities and equipment in the rearing facility Quality Control 	5 %
11	Students are able to plan and implement biological control on a field scale and in greenhouses	accuracy of planning and implementing biological control on a field scale and in greenhouses	accuracy in planning and management Biological control at field scale and in greenhouses with complex integration of natural enemies Form of assessment: Tasks - Presentations	Method: Lectures, and discussion	• 100 minutes	 Conditions and conditions required for biological control in the field and/or in greenhouses Complex integration of natural enemies 	5 %

12	Students master knowledge about biological control evaluation	accuracy of systematically explaining biological control evaluation methods	accuracy of systematically explaining biological control evaluation methods Task: Presentation	Method: Lectures, and discussion	100 minutes	 By trial - trial By compiling a balance sheet of life in the field Justification of biological control 	5 %
13	Students are able to assess the negative impacts of biological control practices for non-target organisms	Accuracy in identifying negative impacts of biological control practices for non-target organisms	Accuracy in identifying negative impacts of biological control practices for non-target organisms Form of assessment: Assignment	Method: Lectures, and discussion	100 minutes	 -Negative impacts of biological control on non-target organisms (use of insect pathogens, shifting presence of indigenous natural enemies) - Intraguild predation detected by DNA analysis 	5 %

14	Students are able to identify the successes and failures of Biological Control	accuracy in identifying successes and failures of Biological Control	accuracy in identifying factors causing success or failure of biological control Form of assessment: Assignment	Lectures, and discussion	100 minutes	 Examples of success and success factors Examples of biological control failures 	5%
15	Students are able to master knowledge about the relationship between Biological Control and Integrated Pest Management, as well as the Prospects of Biological Control in Indonesia	accurately explain the relationship between Biological Control and Integrated Pest Management, as well as the Prospects for Biological Control in Indonesia	accurately summarize and examine the relationship between Biological Control and Integrated Pest Management, as well as the Prospects for Biological Control in Indonesia	Lectures, and discussion	100 minutes	 The relationship between biological control and integrated pest management Current and future biological control in Indonesia 	5 %

		Form of assessment:		
		Tasks - Short articles		
16	Final Exam			15 %